The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in premessenger RNA 3'-end formation.

نویسندگان

  • L Minvielle-Sebastia
  • P J Preker
  • T Wiederkehr
  • Y Strahm
  • W Keller
چکیده

Polyadenylation of premessenger RNAs occurs posttranscriptionally in the nucleus of eukaryotic cells by cleavage of the precursor and polymerization of adenosine residues. In the yeast Saccharomyces cerevisiae, the mature poly(A) tail ranges from 60 to 70 nucleotides. 3'-end processing can be reproduced in vitro with purified factors. The cleavage reaction requires cleavage factors I and II (CF I and CF II), whereas polyadenylation involves CF I, polyadenylation factor I (PFI), and poly(A) polymerase (Pap1p). CF I has recently been separated into two factors, CF IA and CF IB. We have independently purified CF IA and found that five polypeptides cofractionate with the activity. They include Rna14p, Rna15p, Pcf11p, a new protein called Clp1p, and remarkably, the major poly(A)-binding protein Pab1p. Extracts from strains where the PAB1 gene is mutated or deleted are active for cleavage but generate transcripts bearing abnormally long poly(A) tracts. Complementation with recombinant Pab1p not only restores the length of the poly(A) tails to normal, but also triggers a poly(A) shortening activity. In addition, a monoclonal Pab1p antibody prevents the formation of poly(A) tails in extracts or in a reconstituted system. Our data support the notion that Pab1p is involved in the length control of the poly(A) tails of yeast mRNAs and define a new essential function for Pab1p in the formation of mature mRNAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The P-Loop Domain of Yeast Clp1 Mediates Interactions Between CF IA and CPF Factors in Pre-mRNA 3′ End Formation

Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3' end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 hom...

متن کامل

Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast.

In yeast, four factors (CF I, CF II, PF I, and PAP) are required for accurate pre-mRNA cleavage and polyadenylation in vitro. CF I can be separated further into CF IA and CF IB. Here we show that CF IB is the 73-kD Hrp1 protein. Recombinant Hrp1p made in Escherichia coli provides full CF IB function in both cleavage and poly(A) addition assays. Consistent with the presence of two RRM-type motif...

متن کامل

Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3′-end processing

New transcripts generated by RNA polymerase II (RNAPII) are generally processed in order to form mature mRNAs. Two key processing steps include a precise cleavage within the 3' end of the pre-mRNA, and the subsequent polymerization of adenosines to produce the poly(A) tail. In yeast, these two functions are performed by a large multi-subunit complex that includes the Cleavage Factor IA (CF IA)....

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

Identification of factors regulating poly(A) tail synthesis and maturation.

Posttranscriptional maturation of the 3' end of eukaryotic pre-mRNAs occurs as a three-step pathway involving site-specific cleavage, polymerization of a poly(A) tail, and trimming of the newly synthesized tail to its mature length. While most of the factors essential for catalyzing these reactions have been identified, those that regulate them remain to be characterized. Previously, we demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 15  شماره 

صفحات  -

تاریخ انتشار 1997